
Continuous
Integration
f o r Commi t fes ts
Testing all the patches all the time

Thomas Munro, PGCon 2018, Ottawa

$ whoami
• PostgreSQL hacker at EnterpriseDB (~3 years)

• Some things I’ve worked on: Parallel Hash Join, various
parallel query infrastructure, transition tables for triggers
(sous-chef), remote_apply, replay_lag, SKIP LOCKED,
various portability stuff

cfbot.cputube.org
• List of current

proposed
patches

• Does the patch
apply, do the
tests pass on
Windows, do
the tests pass
on Linux?

• Recent changes
highlighted

Per author view

• core file
backtraces

• regression
tests output
diffs

Motivation

pgsql-hackers@postgresql.org

• ~140 people
contributing code

• ~500 people
contributing to
discussions

• Up to ~250
proposed patches
in consideration at
a time

mailto:pgsql-hackers@postgresql.org

commitfest.postgresql.org
• 4 times a year patches are reviewed and committed in a month-long

‘commitfest’

• Patch submission and review is done entirely through the pgsql-hackers, pgsql-
bugs, pgsql-committers mailing lists

• Patches are tracked through the commitfest.postgresql.org web app; registering
a thread in the CF app is approximately like making a ‘pull request’ in many
other projects

http://commitfest.postgresql.org

Patch inflation

0

75

150

225

300

20
14

-1
2

20
15

-0
2

20
15

-0
7

20
15

-0
9

20
15

-1
1

20
16

-0
1

20
16

-0
3

20
16

-0
9

20
16

-1
1

20
17

-0
1

20
17

-0
3

20
17

-0
9

20
17

-1
1

20
18

-0
1

20
18

-0
3

Moved Committed Returned Rejected

Welcome, new contributors

0

30

60

90

120

20
14

-1
2

20
15

-0
2

20
15

-0
7

20
15

-0
9

20
15

-1
1

20
16

-0
1

20
16

-0
3

20
16

-0
9

20
16

-1
1

20
17

-0
1

20
17

-0
3

20
17

-0
9

20
17

-1
1

20
18

-0
1

20
18

-0
3

Distinct patch authors

How long do patches live?

0

25

50

75

100

1 2 3 4 5 6
Age (no. commitfests) of patches that reached final state in CF 2018-03

Reviewer & committer
bandwidth is precious

Automatically discoverable
problems

• Bitrot: please rebase!

• Other compilers are pickier than yours

• Tests fail (maybe with obscure build options or full TAP
tests)

• Portability bugs (endianness, word size, OS, libraries)

• Uninitialised data, race conditions, …

• Documentation is broken

Build farm

• The build farm will find some of these problems
automatically

• … but that happens after commit, and consumes
committer time and energy

• People will shout at you — ask me how I know

• Let’s apply some of that sort of automation to proposals,
during the review phase

Implementation

-1 from me

This time last year

• Daily cronjob to
check for bitrot in
time for morning
coffee

• Various experiments
with executing tests,
but … how safe is
that?

From: Cron Daemon <munro@asterix>
Subject: Cron <munro@asterix> /home/munro/patches/patchmon.sh

7 out of 8 hunks failed while patching src/backend/libpq/auth.c
Failed to apply /home/munro/patches/ldap-diagnostic-message-v3.patch
1 out of 2 hunks failed while patching configure
1 out of 2 hunks failed while patching configure.in
Failed to apply /home/munro/patches/kqueue-v7.patch

Let’s execute random code
from the internet…

What could possibly go wrong?

patch -p1 < foo.patch

• CVE-2018-1000156 
CVE-2016-10713 
CVE-2015-1418 
CVE-2015-1416 
CVE-2015-1395 
CVE-2015-1196 
CVE-2014-9637 
CVE-2010-4651

• patch: runs arbitrary shell
commands

• patch: writes to files outside the
target source tree

• patch: denial of service

pristine
source
tree,

patch tools

cloned ZFS
filesystem1

2

3 Apply patches in jail

4 Push branch to GitHub
as commitfest/18/1234 

5

patches

Destroy jail, filesystem

Step 1: Quarantine and apply

github.com/postgresql-cfbot/postgresql

• Many wonderful, generous, free-for-open-source build-
bot providers

• Running untrusted code in throw-away virtual machine
images is their core business

• travis-ci.org for Ubuntu, macOS 
appveyor.com for Windows 
… there are many more

• Friendly result pages and APIs

Step 2: Build and test

http://travis-ci.org
http://appveyor.com

How to
• Tell travis-ci.org, appveyor.com, … to watch your github.com,

bitbucket.com, … public source repository and build any branch with
a control file in it

• Add the control file to your branch (.travis.yml, appveyor.yml etc as
appropriate): 
 
script: ./configure … && make -j4 && make check

• This is a nice way to test your branches before you submit patches,
and can send you emails, provide ‘badges’ for your web page, tell
your IRC channel, release homing pigeons etc

• This talk is about plugging an old school mailing list workflow into this
technology!

http://travis-ci.org
http://appveyor.com
http://github.com
http://bitbucket.com

cfbot information flow

git.postgresql.org

cfbot.cputube.org

commitfest.postgresql.org

GitHub

Travis CI

archives.postgresql.org

AppVeyor CI

http://cfbot.cputube.org

Step 3: Collect results

• CI providers have APIs where you can collect the results

• Collecting them in a small database allows consolidated
reporting in one place

• You can also browse results directly at CI websites

Active battles

Windows
• Currently able to run make
check on appveyor.com CI,
but the tablespace test fails
so I just exclude it

• Not yet attempting to run
check-world

• If you know how to fix this,
please see me after, I will
pay you in beer

http://appveyor.com

Rare transient false
negatives

• —coverage .gdca files getting trampled on by multiple
backends (later GCC will fix that)

• Failure to fetch “winflexbison” from sf.net

• Failure to fetch XSL files from oasis-open.org, sf.net

• Timeout of crash-restart TAP test —undiagnosed!

http://sf.net
http://oasis-open.org
http://sf.net

Plans for the future

Terrible 
mock-up

• Run Coverity and other static analysis tools?

• Run Valgrind, Clang asan etc to look for bugs?

• Add a big endian 32 bit non-Linux system for maximum portability
bug detection with one stone?

• Display built documentation for review?

• Make Travis/AppVeyor fetch and apply patches themselves?

• Put .travis.yml, .appveyor.yml files in the tree?

• Andreas Seltenreich’s SQL Smith?

• Code coverage report? (that is, reinstate)

• Automated performance testing…?

• Thanks to Andres Freund, Dagfinn Ilmari Mannsåker, Andrew Dunstan, Peter van
Hardenberg, Oli Bridgman for ideas and scripting improvements

• Thanks to Travis CI and AppVeyor CI for supporting open source

• Thanks to pgsql-hackers for all the patches

Questions, ideas?

